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Motivations
• Over the past two decades many Effective Field 

Theories of QCD have been developed

• ChPT for the study of low-energy hadronic 
physics

• Non-Relativistic QCD / potential NRQCD for 
heavy quarkonium physics

• SCET for jet physics

• At finite T EQCD/MQCD, HTL

• ...



Goal
• Our goal is then to extend the well-

established T=0 EFT formalism for 
heavy quarkonia to the finite 
temperature situation

• EFT help understanding and 
disentangling contribution from the 
various scales

• Systematic, non model-based 
approach to the potential
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• The Wilson coefficient are obtained by matching 
appropriate Green functions in the two theories

• The procedure can be iterated 
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T=0 NR EFTs: a short intro
• Non-relativistic        bound states 

are characterized by the hierarchy 
of the mass, energy and 
momentum scales

• One can then expand observables 
in terms of the ratio of the scales 
and construct a hierarchy of EFTs 
that are equivalent to QCD order-
by-order in the expansion 
parameter

m

mv ∼ 1
r

mv2 ∼ E

QQ



m

mv ∼ 1
r

mv2 ∼ E

T=0 Scales



m

mv ∼ 1
r

mv2 ∼ E

T=0 Scales

Integration of the 
mass scale:

NRQCD



m

mv ∼ 1
r

mv2 ∼ E

T=0 Scales

Integration of the 
soft (momentum 
transfer) scale:

pNRQCD



m

mv ∼ 1
r

mv2 ∼ E

T=0 Scales

ΛQCD Integration of the 
soft (momentum 
transfer) scale:

pNRQCD



m

mv ∼ 1
r

mv2 ∼ E

T=0 Scales

ΛQCD

Integration of the 
soft (momentum 
transfer) scale:

pNRQCD



Weakly coupled pNRQCD

• Degrees of freedom:        states with energy                          
and momentum                                                                
Singlet and octet color states

• US gluons with energy/momentum

• Expansion in       ,         and 

• Potential is a Wilson coefficient, receives contributions 
from all higher scales
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Mass scale
• QCD ⇒NRQCD

• We only consider the leading 
term        , corresponding to 
treating heavy quarks/
antiquarks as static sources

• So far everything goes exactly 
as in the T=0 case
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• NRQCD ⇒pNRQCD

• Integrating out the soft 
modes causes the singlet and 
octet potentials to appear
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Brambilla Pineda Soto Vairo 99

Soft scale



+ + ...

...    ...   ...

+ ...++ ...

+ + ...

...    ...   ...

+ ...++ ...

1
E − p2/m− V (r)

m

mv ∼ 1
r

mv2 ∼ E

T

gT ∼ mD

ΛQCD

Soft scale



m

mv ∼ 1
r

mv2 ∼ E

T

gT ∼ mD

ΛQCD

Fischler 77 Peter 97 Schröder 99 Brambilla et al. 
03/08 Sumino et al. 2009 Steinhauser et al. 2009

The static potential
Vs(r, µ) = −CF

αVs(1/r)
r

= −CF
αs(1/r)

r

�
1 +

αs(1/r)
4π

a1 +
�

αs(1/r)
4π

�2

a2

+
�

αs(1/r)
4π

�3 �
16 π2

3
C3

A ln rµ + a3

�

+
�

αs(1/r)
4π

�4 �
aL2
4 ln2 rµ

+
�

aL
4 +

16
9

π2 C3
Aβ0(−5 + 6 ln 2)

�
ln rµ + a4

�

+ · · ·
�



• First thermal corrections to 
the potential (power law)

• Corrections appear as loops 
in the effective theory

• Real and imaginary parts, 
contributing to energy and 
decay width observables
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V
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• The imaginary part correspond to 
singlet-to-octet thermal breakup
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• After having integrated out the 
temperature Hard Thermal Loop 
contributions have to be 
resummed, giving the 
longitudinal gluon propagator a 
mass and and imaginary part

• This contribution cancels the 
divergence in the previous 
expression
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HTL
Propagator
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• The real part is suppressed but 
the imaginary part indeed 
cancels the divergence
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• Divergences cancel out in the final result

• The real part of the potential is given by the Coulombic 
potential plus power-law thermal corrections

• The imaginary part of the static potential gives the 
decay width , which has two origins: singlet-to-octet 
breakup and Landau damping. The former is 
suppressed by           vs the latter 

�
E

mD

�2

Summing up



Conclusions
• We have shown how to employ the EFT 

approach to deal with a problem characterized 
by various separated energy scales

• We have obtained new result in the 
intermediate regime                                 
which could be relevant for LHC 
phenomenology

• We have introduced a new mechanism of 
thermal decay

m� 1/r � T � mD � E
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Physical picture
• Past studies based mainly on 

phenomenological potential models or 
lattice computations of the free energy

4 O. Kaczmarek et al.
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Fig. 3. Heavy quark free energies in the singlet channel for 2-flavors of dynamical quarks at a
quark mass of m/T = 0.40 on 163

× 4 lattices renormalized to the zero-T potential obtained
from6)(solid line).

This can be written as thermal average over free energies in singlet and octet channels

e−Fq̄q(r)/T =
1

9
e−F1(r)/T +

8

9
e−F8(r)/T . (2.5)

At distances much shorter than the inverse temperature (rT ! 1) the dominant scale
is set by r and the running coupling will be controlled by this scale and become small
for (r ! 1/ΛQCD). In this limit the singlet and octet free energies are dominated
by one-gluon exchange and become calculable within ordinary zero temperature per-
turbation theory, i.e. are given by the singlet and octet heavy quark potential. We
have used this to fix the constant C in (2.2),(2.3) and (2.5) by matching the singlet
free energy to the zero temperature heavy quark potential at short distances.

In fig. 1 the renormalized free energies in the different color channels for two
temperatures are plotted. At small distances F1 coincides with the T=0-potential.
For the temperature of 0.91 Tc we see no thermal effect up to a distance of r

√
σ ≈ 1.5

where string breaking sets in and leads to a constant value at larger separations. For
T=1.24 Tc the thermal effect sets in at r

√
σ ≈ 0.7. The singlet free energy, F1, shows

the usual screened Coulomb like behavior approaching a temperature dependent
constant value at large distances. In all color channels the free energies reach the
same constant (cluster) value at large separations above as well as below Tc.

While the singlet potential is attractive, the octet potential is repulsive at short
distances. From eq. (2.5) it follows that in this limit the color averaged free energy
will be dominated by the singlet contribution. We may then deduce from (2.5) also

Kaczmare
k et al.
2003


